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Abstract—This paper presents a 2D full-wave solver for the
problem of electromagnetic wave propagation in indoor environ-
ments. The solver is based on the Volume Electric Field Integral
Equation (VEFIE) formulation which when discretised by the
method of moments results in a linear system whose iterative
solution can be accelerated by using the FFT. In addition we
explain how a simple pre-multiplication can force the iterative
solver to focus on computing the values of fields in the scatterers,
reducing the number of iterations required and leaving the
computation of fields in free-space as a simple post-processing.
Numerical results are presented validating the model against the
Mie series and Uniform Theory of Diffraction. Some sample
building simulations are presented.

I. INTRODUCTION

The ability to accurately describe electromagnetic wave
propagation underpins all radio channel modelling and wire-
less system development. The indoor environment presents its
own unique challenges given the strong potential for multipath
and variety of materials encountered. New developments in
energy-efficient wireless communications such as the deploy-
ment of femto-cells and location and tracking algorithms
that incorporate multipath information have created a greater
demand for accurate propagation models that can include
as much of the physics of the environment as is possible
but run in reasonable compute times. Models to date have
tended to be empirical, or if deterministic, based on ray
tracing. There has been some efforts to develop full-wave
models based on for example Finite Difference Time Domain
algorithms. This paper outlines recent work which creates
a very accurate model by applying the 2D volume integral
equation formulation. This is a frequency domain formulation
which when discretised produces a matrix equation which can
be iteratively solved for the electric field on a regular lattice
of N points throughout the environment. The form of the
kernel of the integral operator means that the Fast Fourier
Transform can be used to reduce the cost of each iteration
to O (N logN) from O

(
N2
)
. In addition a simple pre-

multiplication step allows the algorithm to concentrate solely
on solving for the unknowns located in the scatterers (walls
etc) ignoring the unknown field values in free-space which can
be computed in a final post-processing step. This has the effect
of dramatically reducing the number of Conjugate Gradient
iterations needed to solve the matrix equation. An alternative
approach is to use a more sophisticated solver such as the

BiCGSTAB. This document is organised as follows: Section
(II) introduces the Volume Electric Field Integral Equation
along with its discretisation using the method of moments and
its compatibility with the Fast Fourier Transform. Section (III)
presents validation results whereby the full-wave results are
compared to those obtained from the Mie series. In addition
we compare the predicted fields against those predicted by the
Uniform Theory of Diffraction (UTD) for simple cases where
we expect UTD to be accurate. We then show how the full-
wave model can be applied to more complicated scenarios
where UTD fails. Section (IV) examines the effect of the
choice of iterative solver. Section (V) discusses some large-
scale simulation results. Section (VI) offers conclusions and
identifies future work needed.

II. FORMULATION

An antenna (modelled as a line source in this 2D imple-
mentation) is placed at some (x, y) location in a building
and radiates at a fixed frequency. Waves (with the electric
field polarised in the z direction) emanate from the antenna
and propagate through, and scatter from, the various walls,
doors, windows and apertures. Our challenge is to find the
fields throughout the environment. The Volume Electric Field
Integral Equation (V-EFIE) [1] writes an equation for the
volume currents in the scatterers in terms of potentials. The
V-EFIE can be expressed in slightly different form from that
given in the reference above, namely

Einc
z (~r) = Ez (~r)+



4

∫
O (~r ′)Ez (~r ′)H(2)

0 (k0 |~r − ~r ′|) ds′

(1)
where the contrast function is given by

O (~r) ≡ k2 (~r)− k2
0 (2)

and measures the difference between the wavenumber at a
point and the wavenumber in free space. We apply the method
of moments by introducing N pulse basis functions, defined
on a regular (x, y) grid

Ez (~r) =
N∑

n=1

enpn (~r) (3)

where
pn (r) =

{
1 ~r ∈ ∆n

0 ~r /∈ ∆n
(4)



and ∆n denotes the domain of pulse basis function n. Point
matching at the centre of each cell yields the linear system

Ae = v (5)

where A is a N ×N impedance matrix, v is a N × 1 vector
containing incident field information and e is a N × 1 vector
containing the unknown electric fields. Equation (5) can be
solved by direct inversion for small problems. However it
is more common to use iterative methods based on Krylov
sub-spaces for medium to large problems. In this work we
use the Conjugate Gradient with Normal Equations (CG-NE)
method and BiCGSTAB. Iterative schemes require repeated
pre-multiplication by A of a sequence of trial solutions
e0, e1, . . . until some convergence criterion is met. The par-
ticular form of A makes this quite computationally efficient
as

A = I + GD (6)

where I is a N ×N identity matrix, D is a N ×N diagonal
matrix while G is block Toeplitz which means we can use the
Fast Fourier Transform (FFT) to pre-multiply a vector by it.
Hence the computational cost of multiplying a vector by A
reduces to O (N logN) instead of O

(
N2
)
. This represents

quite a saving when N is large.

III. VALIDATION

The code was validated by comparing it against the Mie
series solution for scattering from a dielectric cylinder (2D
sphere). The incident field was a plane wave propagating in
the x direction with frequency 700MHz. The cylinder had
radius 0.25m, εr = 10 and was centred at (0, 0). Figure (1)
shows the total electric field along a vertical line through the
cylinder, obtained using both the Mie series and the V-EFIE.
A discretisation rate of 20 samples per wavelength was used
in order to adequately capture the curvature of the cylinder.
In practice a less dense sampling rate of 10 samples per
wavelength is used for simulating propagation in a building.
Excellent agreement is obtained between the two results. The
second validation example is depicted in Figure (2). A line
source illuminates a strongly reflecting cube with εr = 5 and
σ = 0.5. The VEFIE with 10 basis functions per wavelength is
used to compute the fields along the black line. These results
are compared to those obtained using the Uniform Theory
of Diffraction (UTD). Note the existence of three distinct
regions along the black line. The lower region consists of
points where only a diffracted field (emanating from the north
east corner of the scatterer) exists. Above that is a region
where there are LOS incident rays as well as the diffracted
region, while at the top of the line is a region where there
are direct, reflected and diffracted fields. Figure (3) shows the
excellent agreement between the two predictions (the fields
are effectively superimposed in the diagram).

Our final validation compares the VEFIE fields to those
produced by ray theory when applied to propagation through
a slab. Consider the geometry shown in figure (4). A lossless
slab of width 0.25m and length 2m (from −1 < y < 1) has
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Fig. 1. Comparison of total fields along vertical cut through dielectric
cylinder with εr = 10, showing agreement between V-EFIE solution and
that of Mie series

permittivity εr = 3.5. A tapered plane wave propagates in the
x direction with electric field given by

Ez (x, y) =
(
1− y2

)
e−k0x (7)

The tapering ensures that the incident field is zero at the
top and bottom of the slab, minimising (but not eliminating)
diffraction from the edges and ensuring that propagation
through the slab along with reflections from the front face,
as well as internal reflections, are the dominant propagation
mechanisms. Figure (5) compares the fields predicted by
the VEFIE (red) to those obtained by considering a single
reflection from the front face of the slab (blue) as well as those
obtained by considering all multiple order reflections within
the slab (black). Good agreement is achieved between the
VEFIE and the more realistic physical model. The validation
examples have demonstrated that the full wave solver has
been correctly implemented. However in all cases presented
the reference solutions (Mie series, ray theory) are adequate,
and computationally less complex. In order to motivate where
the VEFIE may be useful consider the geometry shown in
figure (6). Here cavities have been inserted into the slab. The
multiple internal reflection model does not account for these,
while the VEFIE can naturally incorporate them (by adjusting
the contrast to zero in the relevant cells). There is no longer
good agreement between the predictions, as the ray model
cannot account for the effect of the internal structure within
the wall.
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Fig. 2. Geometry of comparison with UTD. Receiver points are along
black line. Geometric optics rays shown to distinguish 3 separate optical
regions. Red lines show line of sight (LOS) rays, green lines are reflected
rays. Diffracted rays (not shown) emanate from the north east corner of the
scatterer to all points on the black line.

IV. REDUCED FORWARD OPERATOR

In the VEFIE formulation it is necessary to discretise the
entire region of interest including free space. This is in contrast
to boundary element integral equation formulations that only
discretise the surface of the scattering objects (assuming they
are homogeneous). At first glance the VEFIE thus appears to
greatly increase the number of unknowns needed to describe
the problem. However one should note that discretisation of
the entire region facilitates the use of the FFT to expedite
matrix vector multiplications. Secondly while the number of
unknowns is increased, unknowns located in free-space do not
affect the value of unknowns anywhere else in the grid (that is
they do not produce scattered field as they have zero contrast)
and can be effectively removed from the CG optimisation
process. This is done by pre-multiplying equation (5) by a
diagonal matrix Ĩ whose diagonal entries are given by

Ĩmm =
{

1 ∀m such that O (~rm) 6= 0
0 ∀m such that O (~rm) = 0 (8)

Note that this pre-multiplication does not compromise the
ability to use the FFT for rapid matrix-vector multiplication
as it merely introduces a trivial extra multiplication by a
diagonal matrix at each iteration. The net effect, when applied
to the CGNE, is a reduction in the number of iterations
needed to solve the problem as compared to the un-reduced
system. Interestingly, applying this reduction technique to the
BiCGSTAB solver has no effect - the more sophisticated
BiCGSTAB solver already ignores unknowns that are not
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Fig. 3. Electric field (in dB) along line of receivers. From the left we see a
smooth region where there is only a diffracted field, leading to an interference
region where there is diffracted plus direct and in the final interference region
diffracted, direct and reflected.
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Fig. 4. Geometry for propagation through slab.

influencing others and converges more quickly than the accel-
erated CGNE. Example simulations will be discussed during
the presentation.

V. APPLICATION TO INDOOR ENVIRONMENT

The model has been applied to realistic indoor environ-
ments. Figure (8) shows results obtained when the model is
applied to a 10m × 10m indoor space centred on (0, 0) and
comprising 5 rooms with lossy concrete walls. 10 samples per
wavelength were used and the frequency was 1GHz leading
to a total of 678,976 unknowns, of which 578,986 were free-
space unknowns. The source was located at (−0.8,−0.8). A
tolerance of 10−3 was used for the CG-NE and the simulation
converged after just over 1000 iterations, running on a 2008
Mac Book Pro with 4GB of RAM and a 2.53GHz processor.
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Fig. 5. Fields along test line to the left of the slab. VEFIE matches multiple
reflection model, while single reflection model not so accurate.
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Fig. 6. Slab with internal cavities.

VI. CONCLUSIONS AND FUTURE WORK

A description has been given of initial attempts to develop
a full-wave solver for indoor EM wave propagation. The
model is based on the Volume Electric Field Integral Equation
which allows the use of the FFT to speed up iterations.
The increase in the number of unknowns does not have any
adverse effect on the number of iterations required to solve
the system. The model has been validated against the Mie
series and UTD solutions. A motivating example showing
propagation in the vicinity of a wall with cavities shows how
the VEFIE can readily model the internal structure, something
not easily done with ray methods. Future work will see the
model being applied to 3D problems, and a wideband version
developed possibly using AWE [3] to develop a rapid accurate
approximation to the fields over the frequency band of interest.
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Fig. 7. Fields along test line to the left of the slab with cavities. Simple
multiple reflection model no longer able to model internal structure and field
predictions no longer match.

Fig. 8. Electric fields throughout 2D building environment.

REFERENCES

[1] R. Mittra, A. Peterson and S. Ray,“Computational Methods for
Electromagnetics”, IEEE Press Series on Electromagnetic Wave
Theory, 1998.

[2] K. van Dongen, C. Brennan and W. Wright,“A Reduced forward
operator for electromagnetic wave scattering problems”, IET
Proceedings Science Measurement and Technology, Vol 1 No 1,
pp 57-62, 2007.

[3] C. Brennan, P. Bradley and M. Condon.“Efficient wideband
electromagnetic scattering computation using well-conditioned
asymptotic waveform evaluation”, IEEE Transactions Antennas
and Propagation, Vol. 57, No. 10, pp.3274-3282. October 2009.


